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ABSTRACT

Designers of MOS LSI circuits can take advantage of complex

functional cells in order to achieve better performance . This

paper discusses the implemention of a random logic function on an

array of CMOS transistors . A graph—theoretical algorithm which

minimizes the size of an array is presented . This method is

useful for the design of cells used in conventional design

automation systems. 
-

iNDEX TERMS: CMOS functional arrays , CMOS circuit design , LSI

layou t, LSI design automation , computer—aided design , design

au tomat ion
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1. INTRODUCTION

In integrated circuit design it is possible to implement a

logic function by means of a circuit consisting of one or more

elementary cells such as NAND or NOR gates or by means of a single

functional cell.

The basic advantages of functional cells, such as smaller

size and better performance , are well known to designers of MOS

LSI [1]. Theoretical results about network synthesis with complex

functional cells have been reported in [2], [3], [Z~] . Some

commercial products also take advantage of these properties [5].

However , most designers still use a limited library of cells. For

example , NAND gates are often used as the only primitive cell.

This is partly due to the fact that little has been repor ted about

the physical implementation of complex functional cells [6].

Therefore, designers do not have confidence in the performance and

merit of more complex cells. In order to overcome these problems ,

a systematic enumeration of functional cells is inevitable.

The number of useful functional cells is enumerated in this

paper. This number is so large that a systematic layout method is

necessary . An array of CMOS FET’s is introduced as the basic

layout and a graph- theoretical algorithm which minimizes the size
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of the array is presented . This type of array is also useful as a

basic cell for conventional design automation systems [7] ,  [8]

because it has a rectangular shape with the same height as the

other cells. Several examples show the significant merit of

functional cells in reducing the space required .
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2. CMOS FUNCTIONAL CELLS

An implementation of the exclusive—or funtion XY + XI is

shown in Figure 1 , where the designer was required to use NAND

gates throughout. An alternative implementation of the same

function is shown in Figure 2 [1 ], where the designer took

advantage of the functional cell which realizes the function XI +

Z. This approach results in better performance and smaller size

than the design of Figure 1.
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a) logic diagram b ) circuit c) layout

5



r~ ~w — ,  

~

-.-.-.----

3. ENUMERAT iON

In this paper , we will limit ourselves to AND—OR networks

realized in CMOS by means of series/parallel connections of

transistors. Furthermore , we will require that the topology of

the p—MOS and n—MOS sides of the circuit are each other ’s dual .

The number of functional cells which has series/parallel

topology is shown in Ta ble 1 , where the max imum number of series

FET ’ s between the power and the output is designated as the level

of a cell. The details of the enumeration are shown in the

Appendix .

Number Number 
—

~

of I of
levels 1 cells

I I
I I

1 I 1
2 1 6
3 80

I 3~I3~i

Ta ble 1 : Number of cells with
a given level.

The delay of a cel l ma inly depends on the number of levels

since it corresponds to the longest path to charge the

capacitance. Generally, cells with less than J4 levels are

desirable. To use all of the cells with 3 levels and some with ~4

levels seems to be a reasonable compromise , although the decision

about the usefulness of cells is beyond the scope of this paper.

In any case , systemat ic design is inev ita ble in order to trea t

more than several hundred cell types.

6
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LI . BASIC LAYOUT STRATEGY

The basic layout scheme for an arbitrary logic function is

given in this section , starting from the corresponding AND/OH (sum

of products) specification.

A cell is an array of CMOS transistors as shown in Figure 3.

It consists of a row of p-MOS transistors and a row of n—MOS

transistors corresponding to the p—MOS and n-MOS sides of the

circuit , respectively. Because of the requirement that the p—MOS

and n—MOS sides are each other ’s dual , the number of transistors

is the same in both rows. ~e will further assume that the

transistors are aligned vertically. AND/OR gates in the logic

diagram correspond to the series/parallel connections in the

circuit diagram . It is quite clear that for every AND/OR

specif icat ion of a boolean func tion , one can obtain a

series-parallel implementation in CMOS technology , in which the

p—MOS side and n—MOS sides are each others dual . The number of

series/parallel transistors for every AND/OR element is equal to

the number of inputs to that element . The dual topology of the

p—MOS side and of the n-MOS side are as shown in Figure 3(c).

A more general topology other than series/parallel can be

used in a MOS circuit as in the case of a relay network . The

7
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topology of the p-MOS side and the n—MOS side need not to be dual

in the strict sense . However , the series—parallel connection and

the duality are assumed here in order to simplify the problem . 



5. OPTIMAL LAYOUT

A graph theoretical algorithm for minimizing the size of a

functional array is developed in this sect ion.

5.1 Preliminary Considerations

Physically adjacent gates can be connected by a di ffus ion

area . The aluminium connections between neighbors , as in Figure

3 ( d ) ,  are replaced by diffusion areas as shown in Figure LI(a), but

the size of the array was not changed . Even in a more

sophisticated layout arrangement , the alignment between p-MOS side

and n—MOS side is required . Figure ‘4(b) is a more optimal size

layout for the circuit of Figure 3(b).

However the best result is obtained from the alternative

circuit of Figure 5(b) which is logically equivalent with the

circuit in Figure 3(b ) .

Finally , the layout of the functional cell can be optimized

as shown in Figure 5(d) and the size of this array is almost one

half that of the basic layout shown in Figure 3(d).

10
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In general , the area of a funct ional cell is calculated as

follows : area = wid th ~ he ight

where : height constant

width basic grid size ~ (number of inputs + num ber of

separations + 1)

A separat ion is required when there is no connection between

physically adjacent transistors as illustrated in Figure ‘4(b).

Since both the cell height and the bas ic grid size are a funct ion

of the technology employed , an optimal layout is obtained by

minimizing the number of separations .

13
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5.2 Graph—Theoretical Algorithm

Definition : An elementary series—parallel graph G(V ,E,v ,w)

consists of a single edge e joining vertices v and w. Hence ,

its vertex set V { v ,w } and its edge set E {(v,w)}. The

vertices v and w are the termination points of G.

Definition: The ser ies compos ition G(V ,E ,v ,w) of two

series—parallel graphs G’(V’ ,E’ ,v ’ ,w ’) and G” (V” ,E” ,v” ,w”) is

a new graph constructed from G’ and G” as follows:

1) V Vt U V” Ii tul — {w ’ ,v”} where u is a new vertex

created to replace vertices w’ an d v” which are merged

together.

2) E E’ U E” where every occurrence of w ’ an d v ” is

replaced by u.

3) v = v’ and w = w” are the termination points of the new

graph

Definition : The parallel composition G(V,E,v ,w) of two

series—parallel graphs G’(V’,E’ ,v ’,w ’) and G”(V” ,E”,v” ,w”) is

a new graph constructed from G’ and U” as follows:

14
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1) V = V ’  U V”  U {v ,w} — {v ’ ,w ’,v” ,w”j where v and w are new

vertices created to replace v ’ ,v ” an d w ’ ,w” respectively.

2) E = E’ U li” , where ever occurrence of v ’ and v ” is

replaced by v and every occurrence of w ’ and w” is

replaced by w.

3) The new terminat ion points are v = v ’ = v” and w = w ’ =

W I’ .

Def in i t ion :  An elementary series-parallel graph is a

series—paral lel  graph .

A graph obtained by successive series and parallel

compositions on a set of elementary series-parallel graphs is

a series—parallel graph .

The graph modcl of a circuit is defined as follows . A p— side

graph and a n—side graph are models of the p—M US side and the

n—MOS side of a circuit , respectively. The p—MOS side graph is

def ined as follows :

— every gate/drain potential is represer.ted by a vertex .

— every transistor is represented by an edge , connecting the

15
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vertices representing the source and drain.

The n-side graph can be defined in a similar way . An example

of such a graph is shown in Figure 5.

Because of the restriction on the CMOS circuits  under

consideration , both the n—side and p—side graphs are

series—parallel graphs .

Edges correspond to transistors in both graphs and they are

connected in a series/parallel manner according to the

series/parallel connections of transistors in the circuit. The

names of input signals are used to label those edges. The p—side

graph and the n—side graph are dual by the assumption of section 3

and each corresponding pair of edges has a common label .

The following property of the graph model is of interest for

the optimal layout of CMOS circuits:

If two edges x and y are adjacent in the graph model , then

it is possible to place the corresponding gates in a physically

adjacent position of an array and hence , connect them by a

diffusion area, in order to minimize the number of separation

areas , it is necessary to find a set of minimum—size paths which

correspond to chains of transistors in the array. As indicated in

16

_______ J



section 5.1 , such a set will result in a minimal area layout.

if there exists an Euler path in the graph model , then all

gates can be chained by diffusion areas. if there is no Euler

path then the graph can be decomposed into several subgraphs which

have Euler paths. in the latter case , each Euler path corresponds

to a chain of transistor’s that is separated from another such

chain by a separation area.

in order to reduce the size of an array it is necessary to

find a pair of paths on the dual graph models , with the same

sequence of labels , because p—type and n—type gates corresponding

to the same input signal have the same horizontal position in the

CMOS array . For example , the path <1 ,3,2,11 ,5> of the n—side graph

in Figure 3(c) produces a chain of gates on the n-MOS side as

shown in Figure ‘4(b). There is, howeve r, no corres ponding Euler

path in the p—side graph . Therefore , the gates on the p-MOS side

are separated between gate 2 and gate ‘4 as shown in Figure ‘4(b).

On the other hand , path <2 ,3, 1 ,11,5> is an Euler path in both

the p-side and the n—side graph of Figure 5(c). Therefore , all

gates can be chained together by diffusion areas without any

separation areas as shown in Figure 5(d).

17
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The general algorithm is shown below :

1) enumerate all possible decompositions of the graph model to

find the minimum number of Euler paths that cover the

graph .

2) chain the gates by means of a diffusion area according to

the order of the edges in each Euler path.

3) if more than 2 Euler paths are necessary to cover the graph

model , then provide a separation area between each pair of

chains.

18



6. REL)UCT1ON OF THE PROBLEM

In order to find the minimum number of Euler paths , it is

possible to take advantage of the reduction method which is

illustrated in Figure 6: an odd number of series or parallel

edges can be reduced to a single edge .

Definition : The reduced graph is obtained by repiacing an odd

number of series (parallel) edges by a single edge , until no

further reduction is possible.

Theorem 1: If there is an Euler path in the reduced graph , then

there exists an Euler path in the original graph .

(Proof) It is possible to reconstruct an Euler path in the

original graph by replacing each edge of the Euler path in

the reduced graph by a sequence of’ the original odd number of

edges.

Sometimes this reduction makes the problem trivial . For

example , the graph model of Figure 8 is reduced to a single edge

and the existence of an Euler path in the graph model is obvious .

19
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Theorem 2: if the number of inputs to every ANLI/OR element is

odd , then

1) the corresponding graph model has a single Euler pa th .

2) there exists a graph model such tha t  the sequence of

edges on an Euler path corresponds to the vertical order

of inputs  on a planar representation of the logic

diagram .

(Proof )  ( 1)  The CMOS implementat ion of an AND/OH element has a

number of series/parallel transistors that  is equal to the

number of inputs to that element (see section 14 ) .  Since the

number of edges in series or in parallel  is always odd , the

graph model can be reduced to a single edge which is an Euler

path itself. So there exists an Euler path on the original

graph according to theorem 1.

(2) It is possible to construct the graph as follows

(see the example in Figure 7(c)):

(a) Start with an edge corresponding to the circuit’s output .

(b) Select an edge corresponding to the output of a gate and

replace it by the series-parallel graph for that gate.

21
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Figure 7: Application of reduction rule .
a) logic diagram b) graph mod el and its reduct ion.
c) reconstruction of an Euler path .
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(c) Reorganize the sequence of new edges on the Euler path

being constructed such that it corresponds to the

vertical order of the inputs  on the planar representation

of the logic diagram . Such a rearrangement of edges in

the Euler path is always possible when the number of

inputs to an AND/OR element and hence the number of’ edges

in series or in parallel is odd.
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7. HEURiSTiC ALGORITHM

Since the graph-theoretical algorithm of section 5 is

ex haust ive in nature , a heuristic algorithm which takes advantage

of theorem 2 is proposed . Additional inputs called

“ pseudo ” input s  are introduced and the original problem is modif ied

so that  every gate in a logic diagram has an odd number of inputs .

it is guaranteed by tneorem 2 tha t  there exists an Euler path for

this modified problem . This Euler path contains edges

corresponding to the original inputs and also edges corresponding

to the new “pseudo”inputs which are possible separation areas.

The topology of the circuit should be selected such that the

number of separation areas is minimized .

The heuristic algorithm consists of’ the following steps:

1) To every gate with an even number of inputs a “pseueo”

input is added.

2) Add this new input  to the ga~ e in such a way that  the

planar representat ion of the logic diagram shows a

minimal interlace of “ pseudo ” and real £nputs. it should

be noted that a “pseudo’ input at the top or at the

bottom of the logic diagram does not con t r ibu te  to the

separation areas , as i l lustrated in Figure 7 ( b )  and

Figure 7 ( c ) .  24
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3) Construct the graph model such that the sequence of edges

corresponds to the vertical order of inputs on the planar

logic diagram .

II) Chain together the gates by means of diffusion areas, as

indicated by the sequence of edges on the Euler path .

“Pseudo “ edges indicate separation areas.

5) The final circuit topology can be derived by deleting

“pseudo” edges in parallel with other edges and by

contracting “pseudo” edges in series with other edges.

The minimizat ion of the separation areas can be performed on

a logic diagram which nicely shows the structure of the series/

parallel graph .

Figure 8 shows the application of this heuristic algorithm to

the problem of Figure 3. The same result as in Figure 5 is found

easily . in general , new additional inputs correspond to

separation areas , but in this case they do not actually separate

the chain of gates because they are on both ends.

25
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This heuristic algorithm does not necessarily give the

optimal layou t . However , if the resul ting sequence has no

separation areas, it is the real optimal solution .

Figure 9 is a four—bit carry look—ahead circuit from

Hewlett-Packard’s processor MC2 I~5) .  The circuit has no Euler

path . But the alternative circuit in Figure 10(c) has an Euler

path on the dual graphs. This optimal solution is found easily by

the heuristic algorithm as shown in Figure 10. Figure 11 shows

that the space for the functional cell is less than one third of

the conventional gate realization .

L _ 
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8. CONCLUSIONS

A systematic survey of MOS functiot.al cells and the

enumeration of random logic functions made it clear that there are

thousands of useful cells. A systematic method to implement a

function on an array of CMOS transistors has been shown and a

graph—theoret ical  algorithm which minimizes the size of the array

has been presented An example showea that  the functional cell

approach can reduce the space of a conventional NAND gate

real2zation considerably. In general , a significant space

reduction can be expected .

The CMOS functional array is also useful as a basic cell for

a conventional design automation system . implementing functional

arrays into a MOS LSI design automation system will be considered

after further studies of logic synthesis and performance

validation .
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APPEND1 X

Enumerat ion of C—MO S Funct iona l  Cells.

A restriction to series/parallel connection and the duality

between p-NU~3 s i d e  and n—MOd side are assumed . Logically

equiva len t  c i rcui ts , for example , circui ts in Figure 3 (b )  and in

Figure 5(b) are counted only once.

Definitions:

T (m , n )  is a set of cells which nave m levels on the p— MG S

side a nd n levels on the n— M OS s ide.

S(m ,n) is a subset of’ T(m ,n) such that the p—M OS side of a

cell c of S(m , n )  is a series connection of 2 components.

P (m , n) is the complement of S(m , n) wi th  respect to T ( m , n ) .

L ( k )  I t i t  is in T,m ,n) and Max(m ,n) = k ) ,  that  is , L ( k )  is

a set of cells which have k levels.
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Theorem 1: S(m ,nfl = P(n ,m fl for (m ,ri) not equal to (1 , 1).

(Proof) Assume (m,n) not equal to (1 ,1). For any circuit c in

P(m ,n), the dual circuit of c is in S(n,m). For any circuit “I

in S(n ,m ) ,  the dual circuit  of d is in P ( m , n ) .  So there is

one to one mapping between P (m , n )  and S(n ,m ) .

Lemm a 1:

k— i

2[> .~ 
{~ S(i , k f l  + :s(k , i ) : }  + S(k,k)1].

i= 1

Defini t ion:  Cl - C2 — . . .  - Ci is a cell such that the p—MOS part

of the cell is a series connection of p—MOS parts in cells

Cl , C2 , .. .  an d Ci .

Hence , P(ml ,nl ) — P(m2,n2) — . . .  — P(mi ,ni) =

Id — C2 — . . .  — Ci Ci is in P(ml ,n l ) ,  C2 is in P(m2,n2),

ci is in P(mi ,ni)}.

Theorem 2: P ( m l , n l )  — P(m2,n2) — . . .  — P(mi ,n i )  is a subset of

S(m,n), where m = m l + m2 + .. .  + ml , and n M a x (n l , n2 ,

ni).
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(Proof) The longest path on the p—MOS side is m l + m2 ...  + ~ii by

definition . The longest path on the n—MOS side is Max(nl ,

n2 , ..., ni) because it is equal to the maximal cutset on the

p— t40S side.

L ( k )  can be decomposed using theorem 2 and enumerated using

theorem 1 and lemma I as follow~~

L (l) is the union of the following two sets:

S( l , 1) = 7,
P ( l , l) = {inverter}.

So L ( l ) ~ =

L ( 2 )  is the union of the following sets:

3( 1 ,2) = ,~
S(2 , 1) = I P ( 1 , l )  - P ( l , l) } ,

S(2,2) = { p ci ’ 1) — P ( 1 , 2 ) ,

P ( l , 2) — P ( l , 2) I,

and their dual forms .

So L (2 f l  = 6.

L ( 3 )  is the union of the following sets:

S( 1 ,3)  :,ø’

S( 3, l )  I P ( l , l) — P(1 ,l ) — P ( l , l) }

S(2 ,3)  I P ( l , i )  — P ( l , 3 ) ,
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P(l ,2) — P(1 ,3),

P(1 ,3) — P(l ,3) I

3(3, 2) { P(1 ,1) — P ( i , l)  — P(l ,2),

P ( l , l )  — P(1 ,2) — P(1 ,2),

P 11 , 2) — P ( 1 , 2) — P ( 1 , 2 ) ,

P ( l , l )  — P ( 2 , 2 ) ,
S

P ( l , d)  — P ( 2 , 2)  i

S( 3 ,3 )  : { P ( l , 1) — P ( l , l )  — P(1 , 3 ) ,

P(1 , l )  — P ( l , 2) — P ( l , 3 ) ,

P ( l , 2) — P(l ,2) — P ( 1 , 3 ) ,

P ( 1 , l )  — P ( l ,3 )  — P ( l ,3 ) ,

P ( l , 2 ) — P ( i ,3)  — P ( l , 3 ) ,

P ( l ,3)  - P ( 1 ,3) - P ( l ,3 ) ,

P ( 1 , l )  — P ( 2 , 3 ) ,

P( 1 ,2) — P (2 , 3 ) ,

P ( l ,3) — P ( 2 , 2 ) ,

P ( 1 ,3) — P ( 2 ,3)  I

and their dual forms

So :L ( 3H 80.

By a similar enumerat ion one can der ive tha t

1L (~t) 1 = 3143L 1.

I
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